Texture Analysis of Citrus Leaf Images Using BEMD for Huanglongbing Disease Diagnosis

نویسندگان

چکیده

Plant diseases significantly threaten agricultural productivity, necessitating accurate identification and classification of plant lesions for improved crop quality. Citrus plants, belonging to the Rutaceae family, are highly susceptible such as citrus canker, black spot, devastating Huanglongbing (HLB) disease. HLB, caused by gram-negative proteobacteria strains, severely impacts orchards globally, resulting in economic losses. Early detection HLB-infected plants crucial effective disease management. Traditional approaches rely on expert knowledge time-consuming laboratory tests, hindering rapid detection. This study explores an alternative method using BEMD algorithm texture feature extraction SVM improve HLB diagnosis. The decomposes leaf images into Intrinsic Mode Functions (IMFs) a residue component. Classification experiments were conducted IMF 1, 2, features. component provided most outstanding level accuracy, reaching 77% two classes, 72% three types, 61% four classes. In categories, 1 performed at accuracy rate, other areas, it 51% making competitive. 2 demonstrated lower ranging from 43% classes 57% categories. findings highlight significance image component, outperforming features accuracy. coupled with presents promising approach diagnosis, surpassing performance previous studies GLCM-SVM techniques.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Citrus Bacterial Canker Disease and Huanglongbing (Citrus Greening)

IntRODUctIOn Compared with the rest of the world, the California citrus industry is relatively free of diseases that can impact growers’ profits. Unfortunately, exotic plant pathogens may become well established before they are recognized as such. This is primarily because some of the initial symptoms mimic other diseases, mineral deficiencies, or toxicities. In addition, development of disease...

متن کامل

First report of citrus huanglongbing disease on orange in Iran

Huanglongbing (HLB), also known as greening, is a destructive disease of citrus that may limit production of this crop in many parts of Asia, Africa and South America. HLB is caused by a non-culturable phloem-limited bacterium of the genus ‘ Candidatus Liberibacter’. Three Candidatus species of Liberibacter, namely, ‘ Ca . L. asiaticus’, ‘ Ca . L. africanus’ and ‘ Ca . L. americanus’, have been...

متن کامل

Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

Huanglongbing (HLB) or "citrus greening" is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and qua...

متن کامل

Citrus huanglongbing: a newly relevant disease presents unprecedented challenges.

Citrus huanglongbing (HLB) is one of the oldest citrus diseases and has been known for over a century. HLB is caused by 'Candidatus Liberibacter' spp. that are phloem-limited, fastidious α-proteobacteria and infect hosts in different Kingdoms (i.e., Animalia and Plantae). When compared with well-characterized, cultivatable plant-pathogenic Gram-negative bacteria, the interactions of uncultured ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JOIN (Jurnal Online Informatika)

سال: 2023

ISSN: ['2528-1682', '2527-9165']

DOI: https://doi.org/10.15575/join.v8i1.1075